¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-JRNL-227722

SUNDIALS Equation Solvers

A. C. Hindmarsh, R. Serban

February 2, 2007

Scholarpedia



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.



UCRL-JRNL-227722

6 February 2007

SUNDIALS Equation Solvers
Alan C. Hindmarsh and Radu Serban
Lawrence Livermore National Laboratory

Livermore, California

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Disclaimer:

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in the Encyclopedia of Dynamical Systems.
Since changes may be made before publication, this preprint is being made available with the
understanding that it will not be cited or reproduced without the permission of the author.



== Introduction ==

SUNDIALS, a SUite of Nonlinear and DIfferential/Algebraic equation Solvers, addresses three
problem types:

* Ordinary Differential Equation (ODE) systems (initial value problems),
* Nonlinear algebraic systems of equations, and
* Differential-algebraic equation (DAE) systems (initial value problems).

All are written in ANSI C. For each problem type, there is a basic solver. For ODE and DAE
systems, there are extensions that perform sensitivity analysis. All five solvers run in either a serial
or a parallel machine setting. The implicit methods used lead to linear systems, for which a variety
of direct and Krylov iterative methods are available. Two of the solvers include support for Fortran
applications, and three include interfaces to Matlab. Full details (except for recent modifications)
are available in Hindmarsh et al. (2005).

== CVODE, for ODE Systems ==
CVODE solves ODE initial value problems, in real N-space, written as

?) = f(tay)’ y(tO) = Yo (y € RN)'

The user first selects one of two variable-order, variable-step linear multistep method families —
implicit Adams methods (up to order 12) or Backward Differentiation Formula (BDF) methods
(up to order 5). Then the user specifies either functional or Newton iteration for the treatment of
the implicit nonlinear equations, and in the Newton case, one of six algorithms (three direct, three
Krylov) to solve the N x N linear systems that arise. These are:

* a dense direct solver (serial version only),

* a band direct solver (serial version only),

* a diagonal approximate Jacobian solver,

* Generalized Minimal Residual (GMRES) iteration,

* Bi-Conjugate Gradient Stable iteration (BiCGStab), and

* Transpose-Free Quasi-Minimal Residual (TFQMR) iteration.

For the dense and band solvers, the Jacobian matrix can be either supplied by the user or
internally approximated. The three Krylov iterative methods are all scaled and include (left or
right) preconditioning. For nonstiff systems, Adams method with functional iteration is sufficient.
For stiff systems, characterized by at least one rapid decay mode (with time constant much smaller
than the solution time scale), one must choose Newton iteration and a linear system solver that
is appropriate to the problem. CVODE chooses stepsizes and method orders automatically and
dynamically, so as to keep integration errors within user-supplied tolerances. The user may also
specify that CVODE find (and stop at) the roots of given functions during the integration of the
ODEs.



== KINSOL, for Nonlinear Algebraic Systems ==
KINSOL solves algebraic systems in real N-space, written as
F(u)=0, F:RNY - RN,

given an initial guess ug. A modified or inexact Newton iteration is performed, using either a
direct (dense or banded) solver (serial version only), or a right-preconditioned Krylov iterative
solver (GMRES, BiCGStab, or TFQMR) for the linear systems. The user can choose full Newton
corrections, or activate a linesearch globalization strategy. Also, the user can specify a scaling on
the u vector and/or on the F' vector, and tolerances on the steps du and/or on F(u), for use in
the stopping tests. There are also three choices for the stopping tests in the Krylov iterations.
KINSOL allows the user to enforce inequality constraints on each component of u — that it be
positive, negative, non-negative, or non-positive.

== IDA, for DAE Systems ==
IDA solves real differential-algebraic systems in N-space, in the general form

F(t,y,?)) = O, y(tO) = Yo, ?)(to) = ?JO-

If the supplied initial conditions are not consistent with the equations, IDA has an option to
correct them, for some cases. The integration of the system uses variable-step variable-order BDF
methods, up to order 5. In the Newton iteration at each step, the linear systems are solved by
one of 5 methods — two direct (dense or band; serial version only) and three Krylov (GMRES,
BiCGStab, or TFQMR). The direct methods allow either a user-supplied Jacobian or an internal
approximation, and the Krylov methods include scaling and left preconditioning. As with CVODE,
IDA chooses stepsizes and orders dynamically to control local errors according to user tolerances,
and the user can have the integration stop at roots of given functions. As with KINSOL, the user
may specify inequality constraints on the components of y.

== Preconditioning ==

The Krylov linear system solvers (GMRES, BiCGStab, and TFQMR) are “matrix-free”, but to
be effective they usually require preconditioning. A preconditioner matrix P is one that captures
the dominant parts of the system Jacobian, but yet permits a reasonably economical solution of
systems Px = b. All of the SUNDIALS solvers allow the user to supply preconditioning, in the
form of two routines — one to preprocess P, and another to solve Pz = b.

Alternatively, the user can call on one of two preconditioner modules included in SUNDI-
ALS. The serial versions of CVODE and CVODES offer a preconditioner that generates banded
difference-quotient approximations to the Jacobian. Also, in a parallel environment, all the solvers
offer a block-diagonal preconditioner with banded blocks (one per processor).

== Sensitivity Analysis ==

When the problem-defining function (f or F'), and possibly also the initial value vector(s),
involve a set of parameters p, it is often desirable to compute the derivative with respect to p of the
solution y (or of some output function of y). Code extensions CVODES (available now) and IDAS
(in development) compute these sensitivities, using either of two approaches. In forward sensitivity
analysis, an ODE or DAE for dy/0p is generated and solved. In adjoint sensitivity analysis, more



suitable when the number of parameters is large, the system is integrated forward and the solution
saved at selected checkpoints, and another auxiliary equation (the adjoint system) is generated
and integrated backwards (along with partial forward integrations between checkpoints). Then the
desired sensitivities are computed in terms of the adjoint solution using a quadrature. The codes
offer various options for the way in which the auxiliary equations are generated, and their solutions
advanced along with the state vector y.

—= Software Features ==

SUNDIALS was designed in a modular manner with careful attention to flexibility and avoidance
of duplication. For example, code modules for the various generic linear solvers (direct and Krylov),
which are independent of the top-level solvers, are accessed through interface functions that are
specific to the various solvers. In addition, for each top-level solver, these interfaces conform to a
standard which permits a user to supply his/her own linear solver module.

Operations on N-vectors (linear sums, dot products, norms, etc.) are also isolated in an NVEC-
TOR module. The generic NVECTOR module defines abstract vector operations, and links to an
actual NVECTOR implementation. The latter can be the serial or parallel (MPI) implementation
supplied with SUNDIALS, or one supplied by the user. The rest of SUNDIALS is independent of
the NVECTOR implementation.

The user interface to the SUNDIALS solvers consists of various function calls that initialize
modules, allocate memory, specify user functions, specify required and optional input parmameters,
compute and obtain solutions, get optional outputs, and free memory. When there is a default for
an optional input, the user can either do nothing or call a Set function to supply a non-default
value. Similar Get functions return optional outputs to the user.

For the CVODE, KINSOL, and IDA solvers, SUNDIALS includes modules that interface with
Fortran applications. Thus a user’s Fortran program can call routines that interface to one of these
solvers, and can supply Fortran subroutines that are called by the solver through its interfaces.

== Reference ==

* Hindmarsh, A. C., et al., SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation
Solvers, ACM Trans. Math. Softw., 31:363-396, 2005.

== External Link ==

* http://www.lInl.gov/CASC/sundials



